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Abstract

The contact of a flat punch over a half-plane under constant normal loads, and oscillating tangential and bulk loads

is studied, with the aim to improve the crack analogue (CA) model for fretting fatigue (FF) (Acta Mater. 46(9) (1998)

2955). New analytical results are found for a range of conditions, finding the effect of bulk loads and of partial slip

which were not considered in the original CA model. Implications for the FF life assessment methodology are found to

be significant.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fretting fatigue (FF) has been discovered long time ago (Tomlinson, 1927; Eden et al., 1911), but has

mostly been seen, until recently, as a ‘‘separate’’ area of fatigue, where the mechanical damage over the

surface was considered to have a dominant role in decreasing the fatigue performance of the material.

Therefore, parameters as microslip amplitude and surface energy dissipated by friction were considered:

typically, the effect of fretting was measured on simple rigs applied to the standard fatigue machines, and

fretting was seen as an additional effect over an otherwise undisturbed standard rotating bending or push–
pull fatigue test. Then, the FF test was compared and empirically correlated with unfretted specimen SN

curves (Nishioka and Hirakawa, 1969), like

rFFL ¼ rFL � fpm 1
�

� eð�d=kÞ� ð1Þ

where rFFL is the ‘‘fretting fatigue limit’’, rFL is the standard fatigue limit, f is friction coefficient, pm is the

applied pressure, d is the amplitude of microslip and k is an empirical constant depending on materials and

surface conditions. Other approaches considered hybrid damage parameters also including the local surface
stress (Nowell and Hills, 1990), like the Ruiz� parameter R ¼ rsd < ðrsdÞcrit. The existence of a FF material
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(or contact pair) property such as Rcrit was never satisfactorily proved, and its determination remained

empirical and unrelated to more classical fatigue literature.

More recently, the role of the contact stress field in provoquing fatigue from a stress raiser feature, has

been recognized, and indeed a crack analogue (CA) model for the case where the contact is complete
(singular pressure and frictional shear tractions) and a notch analogue (NA) for cases where we expect a

smooth transition to zero pressure at the contact area edges, and correspondingly a finite stress concen-

tration, have been proposed in two remarkable papers by the MIT group, called in the following CA and

NA models (Giannakopoulos et al. (1998, 2000), respectively for CA and NA models). It was recognized

that the stress field induced by the contact is very similar to the square-root singular stress field around an

external crack––the singular stress field can be quantified by a stress intensity factor, and the bulk stress in

the contacting materials becomes a T -stress in the fracture mechanics terminology. Cracks developed at the

contact site are kinked cracks, and the condition of initiation is rather a condition for non-propagation over
stress intensity factors ranges DK < DKth. Therefore, for the little crack of size l � 2a (see Fig. 1a) where 2a
is the size of the main crack, no correction should be used according to short-crack theories, as the fracture

mechanics conditions (both threshold and propagation regimes) can be written directly in terms of the main

Fig. 1. (a) The CA model; (b) a flat punch under normal tangential and bulk loads.
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crack and it is the total size of the crack which matters in determining conditions for the necessity of short

or small crack corrections.

In the original CA model, a simplified analysis is made, neglecting the effect of bulk stress into the

tractions, and a full stick condition was assumed. However, in general, frictional problems are known to
cause partial slip, i.e. regions of stick and microslip both simultaneously present within the contact area. In

the classical case of Hertzian contact, when tangential load is applied sequentially to a (constant) normal

load Cattaneo (1938), and later independently Mindlin (1949) found the solution where an annulus of slip

arises of increasing dimension for increasing tangential load, up to the condition of full sliding, reached

when Q ¼ fP . More details on the classical theory and experimental evidence for partial slip are well de-

tailed in Sections 7.2–7.4 of Johnson�s book (1985).

A more general solution to the Cattaneo–Mindlin problem for any plane contact problem (not neces-

sarily Hertzian) was given in (Ciavarella, 1998a,b), and Jaeger (1998), finding that the Cattaneo idea of
correcting the full sliding shear traction term qðxÞ ¼ fpðxÞ could be generalized, where f is friction coef-

ficient and pðxÞ the normal contact pressure distribution. Specifically, the corrective shear stress q�ðxÞ term

q�ðxÞ ¼ pðxÞ � qðxÞ=f ð2Þ

is shown to correspond to the normal contact pressure distribution at some smaller value of the normal

load. Therefore, the increase of tangential force simply make the stick zone to shrink in the reverse order as

the normal contact area during the normal loading process. 1

The effect of bulk stress, oscillating in phase with the tangential loading, was first considered for the

plane Hertzian geometry by Nowell and Hills (1987), and later generalized to more general geometries in

(Ciavarella et al., 1999). In both cases, surface strain ex is moderate in order to assume that slip zones of the

same sign occur at both ends of contact, and a solution similar to (2) is found, where the corrective

pressure, q�ðxÞ, is found from the original equation for normal contact, for a lower normal load and an

additional fictitious geometrical rotation ex=f . The condition for this �corrective� solution to hold is that the

stick zone has to be contained entirely within the contact area. Here we will consider both the case of

moderate bulk stress, and of large bulk stress, and indeed the limit case of bulk stress only (i.e. no tangential
load) obtaining analytical solutions. In the original CA model, only the effect of tangential load on DKII was

considered, and the only possible conditions was full stick (or, in the limit, full slip). In the present paper,

bulk strain is found to significantly alter the tractions (and the stress intensity factors regulating the FF

life), and possibly induce partial slip.

It should be noticed that, as in the original CA model, only the case of constant normal load P is here

considered. Although in most real application, for example in a dovetail joint of a typical gas turbine

engine, there are various components of load that are varying with time, many fretting tests (validating

methodologies and materials) are conducted in the case of constant normal load, and this is a sufficient
motivation for the detailed analysis of the present paper.

2. The crack analogue model

We consider the model suggested by Giannakopoulos et al. (1998), i.e. a square-ended foot pressing over

a fatigue specimen, according to Fig. 1. For a constant mode I load and a varying mode II load (constant
normal load P and varying Q), it is found (for a 2D geometry)

1 A further corollary (Ciavarella and Hills, 1999), is that any wear altering the geometry in the region of the microslip, will not

change the dimension and location of the region of stick, where the pressure will progressively localize, and in the limit a singularity of

pressure would arise at the stick–slip transition point.
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KI ¼ � Pffiffiffiffiffiffi
pa

p ¼ � 2

p
�pp
ffiffiffiffiffiffi
pa

p

DKII ¼ � Qffiffiffiffiffiffi
pa

p ¼ � 2

p
q
ffiffiffiffiffiffi
pa

p ð3Þ

where �pp ¼ P=2a and q ¼ Q=2a. The corresponding contact tractions are

ryy ¼ � P

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p ð4Þ

rxy ¼
Q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p ð5Þ

This solution holds up to the limiting case of full sliding, inclusive, as in that case simply Q ¼ fP , and

q ¼ f �pp. However, this only holds true when no bulk stress is present which is not the typical case and not

the critical case either, because it is the combination of bulk fatigue and fretting loads which causes the

most serious problems. An additional, but minor, assumption, is to neglect the effect of material dissimi-
larity, which would couple the pressure and shear terms. We remind that elastically similar does not mean

necessarily identical materials, but more generally Dundurs� second constant b to be zero (Hills et al., 1993),

i.e.

b ¼
l2

l1
ðj1 � 1Þ � ðj2 � 1Þ

l2

l1
ðj1 þ 1Þ þ ðj2 þ 1Þ ¼ 0 ð6Þ

Here, ji is the Kolosov constant, equal to ð3 � mÞ=ðm þ 1Þ under plane stress, and ð3 � 4mÞ under plane

strain conditions, where mi, li are Poisson�s ratio and shear modulus of body i. Therefore, the condition

b ¼ 0 can be written in plane strain, for example, as

l2

l1

¼ 1 � 2m2

1 � 2m1

ð7Þ

In the original CA model paper some reference is made to the effect of elastic dissimilarity in the simplest

case of pure normal load of a rigid punch on a compressible half-plane (Eqs. (14) and (15) of Giannak-

opoulos et al., 1998). This leads, in the case of perfect stick, to non-standard singularities (such as the
logarithmic one), and more generally a wide range of singularities are obtained for general elastic wedge in

frictional contact over a half-plane (Mugadu, 2002). In order to consider the simplest case of no-coupling,

b ¼ 0, and yet consider the half-plane elasticity correct, the simple solution above (and the entire treatment

which follows) is rigorous only if the indenting punch is rigid l1 ! 1, and the indented material incom-

pressible m2 ¼ 1=2 (so that both sides of Eq. (7) tend to zero).

Turning back on the original CA model, the basic idea is to consider the contact area as equivalent to a

long-crack of dimension a, loaded by KI, DKII, with the following steps, concerning: (1) initiation condition;

(2) direction of propagation; (3) condition for self-arrest:
(1) For the initiation condition, a threshold condition is written in terms of the ‘‘equivalent crack’’ ac-

cording to LEFM as

DKII ¼ � Qffiffiffiffiffiffi
pa

p ¼ � 2

p
q
ffiffiffiffiffiffi
pa

p
6DKII;th ð8Þ

where generally it is sufficient (and conservative) to assume DKII;th ¼ DKth where DKth is the mode I long-
crack fatigue threshold. Also, consistency requires that DKth and DKII are range values for the given load

ratio R. No indication is given for the contribution of KI or the bulk stress. The latter has two effects: (i) to
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modify shear tractions and accordingly the mode II stress intensities DKII; (ii) to act as an independent bulk

fatigue loading when it is cycling. In the original CA model, the bulk stress is suggested to act as a T -stress,

T ¼ rxx ¼ rb ð9Þ

but this is not further taken into account (as there is no simple method to include the effect of T -stress for

fatigue threshold calculations). Notice therefore that in the original CA model the effect of bulk stress is

completely neglected except in the following third step;
(2) If initiated, a kinked crack would experience the following SIFs, depending on the main SIFs KI, KII:

kI ¼ a11ð/ÞKI þ a12ð/ÞKII

kII ¼ a21ð/ÞKI þ a22ð/ÞKII

ð10Þ

where a11ð/Þ; . . . ; a22ð/Þ are the classical Cotterel and Rice geometric functions for a kinked infinitesimal

crack in 2D

a11ð/Þ ¼
1

4
3 cos

/
2

�
þ cos

3/
2

�

a12ð/Þ ¼ � 3

4
sin

/
2

�
þ sin

3/
2

�

a21ð/Þ ¼
1

4
sin

/
2

�
þ sin

3/
2

�

a22ð/Þ ¼
1

4
cos

/
2

�
þ 3 cos

3/
2

�
ð11Þ

The mode I of the main crack, KI, gives no contribution because it is not oscillating (although the kinked

crack experiences both a constant mode I and a constant mode II because of the KI), i.e.

DkI ¼ DkI DKIIð Þ
DkII ¼ DkII DKIIð Þ

ð12Þ

although the actual minimum, mean and maximum values of kI, kII, do depend on KI, too. Then, the

original CA model suggests that the initiation direction will be the one for which kII ¼ 0 (at the max value of

load) which translates into

a21ð/Þ=a22ð/Þ ¼ �KII=KI ¼ q=�pp ð13Þ

which implicitly is imposing the condition only at the maximum value of KII, given that KI is in reality

constant, and the condition kII ¼ 0 is in reality matched at other angles for intermediate values of the load

during the cycle. The simplified condition above gives

sin /
2
þ sin 3/

2

cos /
2
þ 3 cos 3/

2

¼ �KII=KI ¼ q=�pp6 f ð14Þ

where f is the local friction coefficient. The larger is the ratio q=�pp < f , the larger is /. For example, for

q=�pp ¼ 0:5, we get / ¼ 40�.
(3) If no bulk stress were present, the crack even if initiated would not propagate too far into the

specimen. Accordingly, a second condition of interest is the following; the crack, once initiated, will kink at

a distance lc from the surface. If at this distance, the bulk stress is not high enough, the crack will arrest.
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Therefore, the CA computes the crack driving force at this distance and compares it again with the long-

crack threshold. This condition is written in terms of the bulk stress alone in the form

DKth ¼ Drb

4

ffiffiffiffiffiffiffi
plc

p
F /ð Þ ð15Þ

where F ð/Þ is a calibrating function for the kinked crack. Without going into the details of the derivation of

the latter equation (as it will not be further pursued here), notice that the driving force here is the bulk stress

alone as the condition for crack arrest of a kinked crack if initiated. As the contact stress field itself may give

additional driving force to the crack, it may be under-conservative to neglect it.

The present paper improves some aspects of the contact mechanics in the presence of bulk stress, and

gives consequent modifications of the CA model. In particular, the condition of initiation (or non-

propagation of the existing ‘‘crack equivalent’’ contact) is considered in detail, and the bulk stress is in-

cluded in the calculation of the DK factors. Accordingly, the direction of propagation is modified. Since there
is no special reason to consider separately the effect of contact loads and bulk stress (neglecting the former,

when considering the latter, and vice versa), the effect of contact loads and of bulk stress are considered at

the same time, writing a single condition for initiation, giving implicitly the condition of self-arrest.

More improvements of the CA model in order to consider varying contact loads, or effect of different R-

ratios, are not considered here.

3. Contact problem

We turn back to the contact problem in Fig. 1, which is governed by standard integral equations given in
many books on contact mechanics (see e.g. Johnson, 1985; Hills et al., 1993), obtained simply by integrating

the Flamant solution for a line force acting on the half-plane. In particular, returning to the case of two

elastic materials, we write a first equation in terms of the tangential displacements derivative oux1=ox for the

punch

oux1
ox

ðx; 0Þ ¼ j1 � 1

4l1

pðxÞ � j1 þ 1

4pl1

Z a

�a

qðtÞ
x� t

dt ð16Þ

and similarly for the half-plane, including a independent bulk strain as external loading condition,

oux2
ox

ðx; 0Þ ¼ j2 � 1

4l2

pðxÞ þ j2 þ 1

4pl2

Z a

�a

qðtÞ
x� t

dt þ eb ð17Þ

The bulk strain eb is obviously related to the bulk stress in material labelled as ‘‘2’’, for plain strain as

eb ¼ rb

E2

ð1 � m2
2Þ ð18Þ

Coulomb�s friction law implies conditions on the relative tangential displacements function

g0ðxÞ ¼ oux1
ox

� oux2
ox

¼ �A
p

Z a

�a

qðtÞdt
x� t

þ bApðxÞ � rb

E2

ð1 � m2
2Þ ð19Þ

where A is the ‘‘composite compliance’’ of the bodies which in terms of Young�s modulus and Poisson�s
ratio of each material, is
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A ¼ 2ð1 � m2
1Þ

E1

þ 2ð1 � m2
2Þ

E2

¼ 2
1

E�
1

�
þ 1

E�
2

�
ð20Þ

We recollect here that we have assumed b ¼ 0, and by writing 2

E�
2

E�
1

�
þ 1

�
¼ c ð21Þ

we can finally write the compatibility condition on displacements as

g0ðxÞ
A

¼ � 1

p

Z a

�a

qðtÞ
x� t

dt � rb

2c
ð22Þ

In the stick region, assuming there is no previous slip (as it is correct after the normal load has been applied

and no tangential or bulk load), we can write g0ðxÞ ¼ 0Z a

�a

qðtÞ
x� t

dt ¼ � prb

2c
; x 2 stick zone ð23Þ

The solution is subject to Coulomb�s law for friction, and in particular jqðxÞj6 fpðxÞ with the additional

constraint that frictional slip opposes relative motion; finally, equilibrium in the horizontal direction gives

Q ¼
Z a

�a
qðxÞdx

where obviously Q is the applied tangential load.

Once shear tractions are determined, the resulting surface stress in the half-plane can be obtained from

(17) and (18). In fact,

exxðx; 0Þ ¼
oux2
ox

¼ 1 þ m2ð Þ 1 � 2m2ð Þ
E2

pðxÞ þ
2 1 � m2

2

� �
pE2

Z a

�a

q tð Þ
x� t

dt þ rb

E2

ð1 � m2
2Þ ð24Þ

Also, from the constitutive equations under plane strain,

exx ¼
ð1 � m2Þrxx

E
� mð1 þ mÞryy

E
ð25Þ

and considering ryyðx; 0Þ ¼ pðxÞ, we get

rxxðx; 0Þ ¼
E2

ð1 � m2
2Þ
exxðx; 0Þ þ

m2

ð1 � m2Þ
pðxÞ ð26Þ

and therefore, by combining (24)–(26)

rxxðx; 0Þ ¼ pðxÞ þ 2

p

Z a

�a

qðtÞ
x� t

dt þ rb ð27Þ

which we will be using to obtain details on surface stress in the various cases––notice that here c has no
effect, whereas it has effect on the determination of the determination of the stick region, as in Eq. (23).

2 Notice that c ¼ 2 for identical materials, but is equal to 1 for the case most rigorously treated in the present paper, of rigid punch

and incompressible material––we continue to write c in the following in order to obtain the solution in general, although approximate

for c 6¼ 1.
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3.1. Tangential load only

The shear tractions are given by the solution of the integral equation above (23), where g0ðxÞ depends on

relative displacements in tangential direction, in the following manner: when a tangential load Q is applied
sequentially to the normal load only, obviously g0ðxÞ ¼ 0 in the stick region, as already used in deriving

(23). The equation is the same found for the normal load only, so the solution is as correctly derived in the

original CA model. This solution in fact satisfies Coulomb�s law for friction, and in particular

jqðxÞj6 f jpðxÞj in the entire contact area, as long as jQj6 f jP j. At this limit, the is suddenly full sliding in

the entire contact area.

After determining the contact tractions, it is possible to quantify the tensile stress field generated. In

particular, the surface stress, is obtained as

rxxðx; 0Þ ¼
4Q

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p arctan

ffiffiffiffiffiffiffiffiffiffiffi
x� a
xþ a

r 
þ arctan

ffiffiffiffiffiffiffiffiffiffiffi
xþ a
x� a

r !
; xj jP rxxðx; 0Þa ¼ pðxÞ; jxj6 a ð28Þ

and this is plotted in Fig. 2 where it appears clearly that the only tensile stresses are at the trailing edge of

the contact. Near the contact edge, the asymptotic form for rxx is, for example for the right edge (and

symmetrically for the left edge)

rxxðx ! aþÞ ¼ lim
x!aþ

rxxðx; 0Þ ¼ 2
KIIffiffiffiffiffiffiffi
2pr

p

rxxðx ! a�Þ ¼ lim
x!a�

rxxðx; 0Þ ¼
KIffiffiffiffiffiffiffi
2pr

p
ð29Þ

as predicted by the CA model, where KI and KII are defined in (3).

3.2. Bulk stress only

In the case of normal force P and bulk load rb the solving Eq. (23) in the hypothesis of full stick
gives

Fig. 2. Tangential load only: surface stress rxx=q for Q=fP ¼ 0:5.
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qðxÞ ¼ rb=2c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � t2

p

x� t
dt ¼ x=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðx=aÞ2
q rb

2c
ð30Þ

which holds if jqðxÞj6 fpðxÞ, i.e. if

jxj=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðx=aÞ2

q rb

2c
6

2

p
f �ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðx=aÞ2
q ð31Þ

Hence, there is complete stick only for small bulk loads, when

rb 6
4

p
cf �pp ð32Þ

For larger bulk loads, if rb P ð4=pÞcf �pp, two slip zone take place next to the contact edge in symmetrical

position, and the solution of the integral equation is obtained using a procedure similar to Spence�s solution

(Spence, 1973). The solution of tangential traction can be considered as

qðxÞ ¼ q�ðxÞ; jxj6 b
fpðxÞ signðxÞ; b6 jxj6 a

�
ð33Þ

where b is the semidimension of the stick area.

Hence, from the solving Eq. (23) we can write

�
Z �b

�a

fpðtÞ
x� t

dt þ
Z a

�a

q�ðtÞ
x� t

dt þ
Z a

b

fpðtÞ
x� t

dt þ rbp
2c

¼ 0; jxj6 b ð34Þ

Considering the skew-symmetrical properties of pðtÞ and qðtÞ,Z a

�a

q�ðtÞ
x� t

dt ¼ 2

Z b

0

q�ðtÞ
x2 � t2

tdt ð35Þ

and

�
Z �b

�a

fpðtÞ
x� t

dt þ
Z a

b

fpðtÞ
x� t

dt ¼ �
Z �b

�a

fpðtÞ
x2 � t2

ðxþ tÞdt þ
Z a

b

fpðtÞ
x2 � t2

ðxþ tÞdt

¼ 2

Z a

b

fpðtÞ
x2 � t2

tdt ð36Þ

Finally, we get a Cauchy integral equation of the second kind (Hills et al., 1993)

2

p

Z b

0

q�ðtÞ
x2 � t2

tdt ¼ � rb

2c
� 4

p2

Z a

b

f �pp

ðx2 � t2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðt=aÞ2

q tdt ¼ F ðxÞ; jxj6 b ð37Þ

whose solution is

q�ðxÞ ¼ � 2

p
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p Z b

0

F ðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p
ðx2 � y2Þ

dy ð38Þ

This solution is only valid if the following consistency condition is satisfiedZ b

0

F ðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p dy ¼ 0 ð39Þ

From (37) the condition above becomes

�
Z b

0

rb=2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p dy þ 4

p2

Z b

0

R a
b

f �pp

ðt2�y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðt=aÞ2

p tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p dy ¼ 0 ð40Þ
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and in particular the first term is equal to pr=4c, whereas the second one can be suitably write as

4

p2

Z a

b

f �ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðt=aÞ2

q t
Z b

0

1

ðt2 � y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p dy

" #
dt ð41Þ

where the integral in square brackets is equal to

p=2

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � b2

p ð42Þ

Hence, we have

� prb

4c
þ 2

p

Z 1

b=a

f �ppffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðb=aÞ2

q dt ¼ 0 ð43Þ

Imposing the substitution z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p
we find for the integral above

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðb=aÞ2

p

0

f �ppffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðb=aÞ2 � z2

q dz ¼ f �ppK 0ðb=aÞ ð44Þ

Hence, we get

K 0ðb=aÞ ¼ p2rb

8cf �pp
ð45Þ

where K 0ðb=aÞ ¼ Kð1 � ðb=aÞ2Þ, and Kð�Þ is the complete elliptic integral of the second kind.
In Fig. 3 the stick area semiwidth is plotted as a function of dimensionless bulk load rb=ð4=pÞcf �pp and it

can be noticed that for rb=ð4=pÞcf �pp6 1 the entire contact area is in full stick.

Using the same method we can simplify the expression of tangential traction

q�ðxÞ ¼ � 2

p
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p
2
64�

Z b

0

rb=2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p
ðx2 � y2Þ

dy þ 4

p2

Z b

0

R a
b

f �pp

ðt2�y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðt=aÞ2

p tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p
ðx2 � y2Þ

dy

3
75 ð46Þ

where the first integral is equal to zero, whereas for the second we get

Fig. 3. Bulk load only: stick area semiwidth as a function of non-dimensional bulk load ðp=4Þðrb=cf�ppÞ.
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Z a

b

f �ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðt=aÞ2

q t
Z b

0

1

ðt2 � y2Þðx2 � y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p dy

" #
dt ð47Þ

Solving the integral in the square brackets we find

q�ðxÞ ¼ 4

p2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p Z a

b

f �ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðt=aÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � b2

p
ðt2 � x2Þ

The shear tractions in the stick area can be also expressed using Pðn;mÞ, the complete elliptic integral of

the third type,

q�ðxÞ ¼ 4

p2
f �pp

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p

a2 � x2
P

a2 � b2

a2 � x2
; 1

�
� b2

a2

�
ð48Þ

In Fig. 4 the tangential tractions are plotted for different values of bulk load rb=ð4=pÞcf �pp. The surface

stress is given by (27) and so for the case of rb 6 ð4=pÞcf �pp we find

rxxðx; 0Þ ¼
rb

2
þ 2rb

pc
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p arctan

ffiffiffiffiffiffiffiffiffiffiffi
x� a
xþ a

r 
þ arctan

ffiffiffiffiffiffiffiffiffiffiffi
xþ a
x� a

r !
; jxjP a ð49Þ

rxxðx; 0Þ ¼
rb

2
þ pðxÞ; jxj6 a ð50Þ

whereas for rb P ð4=pÞcf �pp

rxxðx; 0Þ ¼
rb

2
þ pðxÞ � 8

p2
f �pp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðx2 � b2Þ

p
a2 � x2

P
a2 � b2

a2 � x2
; 1

�
� b2

a2

�
; jxjP b ð51Þ

Fig. 4. Bulk load only: shear tractions for several values of bulk load ðp=4Þðrb=cf �ppÞ ¼ 0:25, 0.5, 1, 1.25, 1.5, 2.
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rxxðx; 0Þ ¼
rb

2
þ pðxÞ; jxj6 b ð52Þ

In Fig. 4, the first three low values of bulk stresses, for which rb=ð4=pÞcf �pp < 1, show a smooth variation of

shear traction, whereas the largest ones, for which rb=ð4=pÞcf �pp > 1, show a clear and abrupt change of

slope in correspondence to the stick–slip interface. The surface stress state is plotted in Fig. 5, for three

values of bulk stress, one lower and two higher than ð4=pÞcf �pp. Notice that for the largest values of bulk

stress, the stress becomes everywhere tensile, except for a localized region near the sharp contact edges.

The KII factors in such case also define the asymptotic stresses in the regions near the edges, and are

found as

KII ¼ �
ffiffiffiffiffiffi
pa

p
rb

2c
; rb 6

4

p
cf �pp

KII ¼ �fKI; rb P
4

p
cf �pp

ð53Þ

3.3. Tangential and bulk load

In the case of tangential and bulk load applied simultaneously, the solution of integral equation (23) is

qðxÞ ¼ x=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðx=aÞ2

q rb

2c
þ Q

pa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðx=aÞ2

q ð54Þ

in the assumption complete stick situation, when jqðxÞj6 fpðxÞ in the entire contact region.

Fig. 5. Bulk load only: surface stress for several values of bulk load ðp=4Þðrb=cf �ppÞ ¼ 0:5, 1.5, 3.
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Accordingly, we can write that (54) is the correct solution if the following condition is satisfied

rb

2c
þ Q

pa
6 f

P
pa

) rb 6
4

p
cf �pp 1

�
� Q
fP

�
ð55Þ

If the condition is not satisfied we can expect the microslip region to be next to the left edge, in opposite

direction with respect to the tangential load Q. We can therefore write the tangential traction as the sum of

a component of complete sliding fpðxÞ and a corrective contribute q�ðxÞ, different from zero only in the stick
area. If we indicate b as the coordinate of left edge of the stick area, we can write

qðxÞ ¼ f jpðxÞj þ q�ðxÞ; �a6 x6 b
f jpðxÞj; b6 jxj6 a

�

From the integral equation of the shear tractions (54), we get

1

p

Z b

�a

q�ðtÞ
t � x

dt ¼ rb

2c
ð56Þ

After normalizing by setting z ¼ t � ðb� aÞ=2ð Þ=ðbþ aÞ=2 and w ¼ x� ðb� aÞ=2ð Þ=ðbþ aÞ=2 we obtain
the Cauchy integral equation of the first kind in the simple form

1

p

Z 1

�1

q�ðzÞ
z� w

dz ¼ rb

2c
ð57Þ

The standard solution is reported in (Hills et al., 1993) considering that the unknown function q� can be

singular for x ¼ �a but has to be non-singular in x ¼ �b,

q�ðwÞ ¼ rb

2cp

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � w
1 þ w

r Z 1

�1

1 þ zffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
z� wð Þ

dz ¼ � rb

2c

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � w
1 þ w

r
ð58Þ

and so

q�ðxÞ ¼ � rb

2c

ffiffiffiffiffiffiffiffiffiffiffi
b� x
aþ x

r

The only unknown b can be calculated from the equilibrium condition

Q ¼
Z a

�a
qðxÞdx ¼ fP � prb

2c
bþ a

2
ð59Þ

and

b ¼ 4cðfP � QÞ
prb

� a ð60Þ

If the (55) is not satisfied, the ratio above is less than 2a and so accordingly b is correctly less than a. In

Fig. 6 we can observe the traction qðxÞ plotted in non-dimensional terms as ðp=2ÞqðxÞ=f �pp for Q=fP ¼ 0:5
and rb=ð4=pÞcf �pp ¼ 1. Also included in the figure are the frictional limits for ðp=2ÞqðxÞ=f �pp, given by the

pressure terms ðp=2ÞpðxÞ=�pp and its value after a change of sign �ðp=2ÞpðxÞ=f �pp for the reverse sliding. If the

bulk load is too large there is also slip next to the right corner, i.e.

fP

pa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðx=aÞ2

q � rb

2c

ffiffiffiffiffiffiffiffiffiffiffi
b� x
aþ x

r
6 � fP

pa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðx=aÞ2

q ; x ! �a ð61Þ
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or

rb

2c

ffiffiffiffiffiffiffiffiffiffiffi
bþ a

p
P 2

fP

p
ffiffiffiffiffi
2a

p ð62Þ

Taking into account of (60), after some algebra we get

rb P
4

p
cf �pp

1

1 � Q=fP
ð63Þ

For bulk loads larger than the above limit the only practical solution is a numerical method to find the

tractions. However, since it is only the asymptotic stresses which matters, and these are known from the

sliding condition at both ends, there is no need to further pursue the numerical solution. Therefore, we have

three possibly situations according to the bulk load, as we can see in Fig. 7.

The KII factors in the cases of rb 6 ð4=pÞcf �pp 1 � Q=fPð Þ are found as

KII ¼
ffiffiffiffiffiffi
pa

p
rb

2c
þ Qffiffiffiffiffiffi

pa
p ; x ¼ a

KII ¼ �
ffiffiffiffiffiffi
pa

p
rb

2c
þ Qffiffiffiffiffiffi

pa
p ; x ¼ �a

ð64Þ

whereas for ð4=pÞcf �ppð1 � Q=fP Þ6 rb 6 ð4=pÞcf �pp=ð1 � Q=fP Þ

KII ¼ fKI �
ffiffiffiffiffiffi
2p

p
rb

2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cðfP � QÞ

prb

s
; x ¼ �a

KII ¼ fKI; x ¼ a

ð65Þ

and finally for rb P ð4=pÞcf �pp=ð1 � Q=fP Þ
KII ¼ �fKI; x ¼ �a

KII ¼ fKI; x ¼ a
ð66Þ

Fig. 6. Bulk and tangential loads: shear tractions for Q=fP ¼ 0:5 and ðp=4Þðrb=cf �ppÞ ¼ 1.
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Figs. 8 and 9 give the variation of the mode II stress intensity factor as a function of bulk and tangential

loads, at the trailing and leading edge, respectively: the latter is given only for completeness (as the trailing

edge value is always greater), and notice that it varies sign, for large enough bulk loads.

Fig. 8. Stress intensity factors ratio KII=fKI 6 1 at the trailing edge, according to loading conditions.

Fig. 7. Stick zone boundaries according to loading conditions.
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4. Consequences for the CA model

In terms of the inclination direction for the first propagation phase, we return to (14) where KI is fixed
while KII depends on the load case and is an oscillating term. The CA model suggest to impose the max-

Fig. 9. Stress intensity factors ratio KII=fKI 6 1 at the leading edge, according to loading conditions.

Fig. 10. Initiation direction ratio a=alim for a crack at the trailing edge, according to loading conditions.
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imum SIF value to find the angle with the x axis, / in Fig. 1b, (a is the complementary / to p, i.e.

a ¼ p � /). In the partial slip condition, clearly the ratio KII=KI is constant and is equal to the friction

coefficient f , whereas it is variable in the situation of complete stick. In the latter case we have to impose k2

to be zero. In either condition, we compute the predicted initiation angle as

sin /
2
þ sin 3/

2

cos /
2
þ 3 cos 3/

2

¼ �KII

KI

ð67Þ

Fig. 11. Limiting initiation direction for a crack as a function to the friction coefficient f .

Fig. 12. Initiation direction ratio a=alim for a crack at the leading edge, according to loading conditions.
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In the case of complete stick, and rb 6 ð4=pÞcf �ppð1 � Q=fP Þ

sin /
2
þ sin 3/

2

cos /
2
þ 3 cos 3/

2

¼ p rbð Þmax

4c�pp
þ Qmax

P
ð68Þ

whereas for larger bulk loads, we have full slip conditions, imposing that the second term is equal to the

limit value f

sin /lim

2
þ sin 3/lim

2

cos /lim

2
þ 3 cos 3/lim

2

¼ f ð69Þ

In Fig. 10 the initiation direction is shown as a ratio with alim ¼ p � /lim, the limit value depending on
friction coefficient f which is in turn plotted in Fig. 11. In Fig. 12 we can observe the initiation direction of

crack in the leading edge (the limit angle is still obviously the same as in the trailing edge).

5. Conclusions

The contact problem for a flat punch has been solved, with a proper formulation including the bulk stress

effect on the contact shear traction, improving the contact analysis of the recent CA model for FF made by
Giannakopoulos et al. (1998). The corrected (higher) value is shown to occur for the mode II stress intensity

factors. Specifically, for rb 6 ð4=pÞcf �ppð1 � Q=fP Þ we find for the trailing edge (where the crack is most

likely to initiate)

KII;max ¼
ffiffiffiffiffiffi
pa

p
rb

2c
þ Qffiffiffiffiffiffi

pa
p ; x ¼ a ð70Þ

whereas for larger bulk stresses,

KII;max ¼ fKI; x ¼ a ð71Þ

Fig. 13. Correction (in %) for the mode II stress intensity factor with respect to the original CA model, according to loading conditions.
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In the previous CA model KII is calculated taking into account only tangential load

KII ¼ ðKIIÞQ ¼ Qffiffiffiffiffiffi
pa

p ð72Þ

Hence, the error in neglecting bulk stress varies as shown in Fig. 13,

err% ¼ 100 �
KII � ðKIIÞQ

KII

ð73Þ

which is higher for low values of Q=fP and larger bulk stresses. The original CA does not consider the effect
of bulk stress, and the error may become very large for bulk stresses already as low as rb ¼ 0:1ð4=pÞcf �pp if at

the same time Q=fP is lower than, say, 0.5. Indeed the error can grow up to the limiting 100% (according to

the definition given in Fig. 13) when the bulk stress only is present (Q=fP ¼ 0) as in this case the original CA

model would not imply any stress intensity at all. Vice versa, given that there is a limit to the value of the

asymptotic tractions near the contact edges (given by friction), the maximum error for Q=fP > 0 is smaller

than 100%, and indeed follows a linear variation with Q=fP , as

err%max ¼ 100ð1 � Q=fP Þ ð74Þ
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